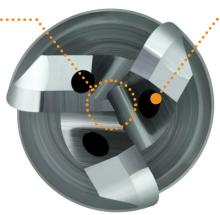


New Alimaster

High Efficiency. Multi-functional Machining of Aluminium Alloys

New DLC coated type added to the range for even better welding resistance.



M Alimaster

Helical internal through coolant holes, together with an optimised cutting edge geometry enables highly efficient machining.

Strengthened Centre Cutting Edges

Optimised centre cutting edges provide strength and reliability even during plunging.

Helical Through Coolant Holes

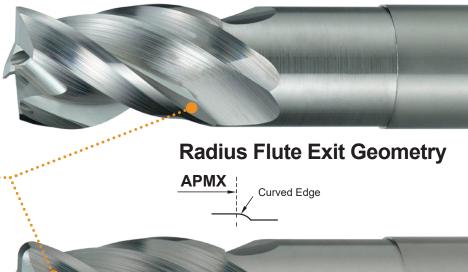
Chip discharge during plunging, ramping and grooving have been significantly improved, for stable, high efficiency cutting.

Helical holes maintain a stable coolant supply even after regrinding.

Ideal Flute Geometry

The cross sectional geometry of the flutes is perfect for efficient chip discharge and prevents chip jamming commonly associated with high feed machining of aluminium.

Square End Mill, 3 Flute


A3SA

Iregular Helix and Curved Flute Exit Geometry

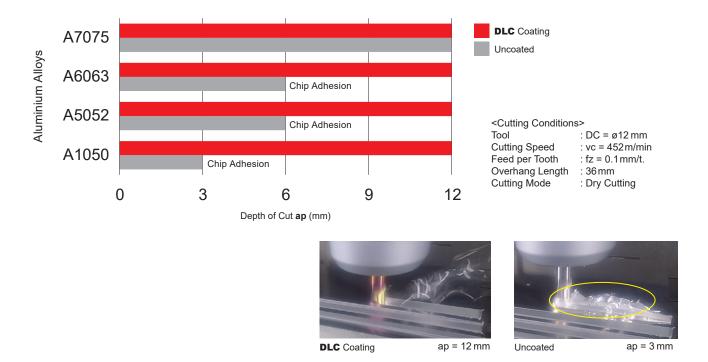
Suppresses chatter to enable excellent surface finishes.

Radius End Mill, 3 Flute

A3SARB

High Efficiency & Economy

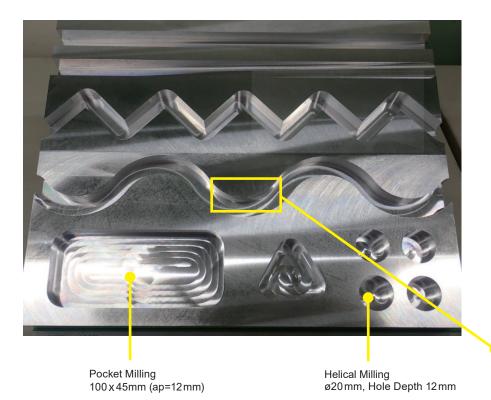
DLC Coating


By adopting a unique DLC coating with excellent adhesion and welding resistance, cutting friction is reduced thereby provides extra stability and efficiency. Additionally wet or dry cutting is possible for slot milling and contouring.

DLC coatings may differ naturally in colour. This has no effect on quality or performance.

Dry Slot Milling - Comparison when Machining Different Materials

The excellent welding resistance and chip evacuation properties enables high efficiency slot milling even at large depths of cut.



^{*} Air blow both internal and external is used to effectively evacuate chips.

Cutting Performance

With DLC Coating - Example of Dry Machining A7075 Material

Multi-functional dry machining is possible.

Excellent Chip Evacuation

Wall Surface

<Cutting Conditions> Workpiece Material : A7050

Tool : DLC3SA120N36C Cutting Mode : Dry Cutting Machine : Vertical M/C


(mm)

Cutting Mode	Revolution n (min ⁻¹)	Cutting Speed vc (m/min)	Feed Rate vf (mm/min)	Feed per Tooth fz (mm/t.)	Depth of Cut ap	Width of Cut ae
Slot Milling	12000	452	3600	0.1	12	12
Ramping : 3°	12000	452	1800	0.05	12	12
Helical Milling	12000	452	1800	0.05	Pitch 2	_
Pocket Milling	12000	452	3600	0.1	12	3.6

 $[\]ensuremath{\bigstar}$ Air blow both internal and external is used to effectively evacuate chips.

Uncoated Type - Slot Machining A7050 Material

Utilising internal coolant and an optimised cutting edge geometry enables double the efficiency levels of conventional products.

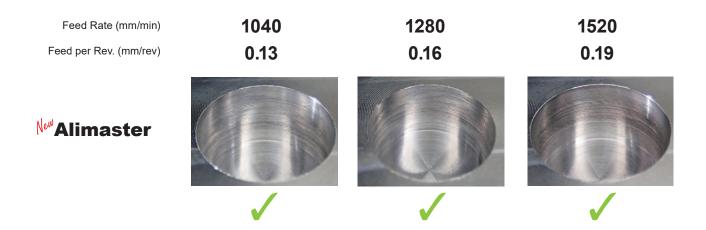
Depth of Cut

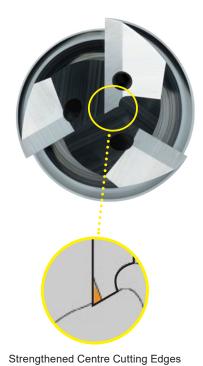
Cutting Mode

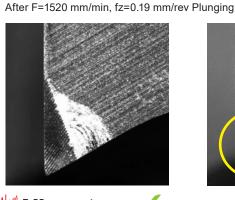
Overhang Length

: ap = 12 mm

(Water-soluble Coolants)


: 36mm : Internal Coolant


4


Cutting Performance

Uncoated Type - Plunge Machining A7050 Material

Higher feed rates than conventional products brings greater machining efficiencies.

Nw Alimaster

Conventional Fracture

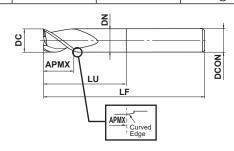
X

<Cutting Conditions>
Workpiece Material : A7050

 $\begin{array}{lll} \text{Tool} & : \text{A3SA120N36C} \\ & \text{DC} = \emptyset 12 \text{ mm} \end{array}$ $\text{Cutting Speed} & : \text{vc} = 300 \text{ m/min} \\ \text{Depth of Cut} & : \text{ap} = 12 \text{mm} \\ \text{Overhang Length} & : 36 \text{ mm} \\ \text{Cutting Mode} & : \text{Internal Coolant} \\ \end{array}$

(Water-soluble Coolants)

NEW End mill, Short cut length, 3 flute, with multiple internal through coolant holes



Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
							0

	DC=12	DC>12		
	0 - 0.020	0 - 0.030		
	12≤DCON≤16	20≤DCON≤25		
h6	0 - 0.011	0 - 0.013		

- Stability and reliability even when slotting, ramping and plunging.
 DLC coating aids in providing excellent chip evacuation.

Order Number	DC	АРМХ	LU	DN	LF	DCON	* No.F	Stock
DLC3SA120N36C	12	18	36	11.4	80	12	3	•
DLC3SA160N48C	16	24	48	15.4	90	16	3	•
DLC3SA200N55C	20	30	55	18	100	20	3	•
DLC3SA250N55C	25	37.5	55	23	100	25	3	•

^{*} Number of Flutes

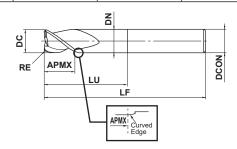
= Cutting Dia. **APMX** = Depth of Cut Max.

LU = Usable Length DN = Neck Dia.

= Functional Length **DCON** = Connection Dia.

DLC3SARB

NEW



Corner radius en	d mill, Short cut len	gth, 3 flute, with mu	ıltiple internal throug	h coolant holes				Š
Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminiur	n All

DC=12	DC>12		
0 - 0.020	0 - 0.030		
12≤DCON≤16	20≤DCON≤25		
0 - 0.011	0 - 0.013		

- Stability and reliability even when slotting, ramping and plunging.
- DLC coating aids in providing excellent chip evacuation.

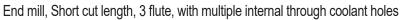
(mm)

									()
Order Number	DC	RE	APMX	LU	DN	LF	DCON	* No.F	Stock
DLC3SARB120R100N36C	12	1	18	36	11.4	80	12	3	•
DLC3SARB120R200N36C	12	2	18	36	11.4	80	12	3	•
DLC3SARB120R300N36C	12	3	18	36	11.4	80	12	3	•
DLC3SARB160R200N48C	16	2	24	48	15.4	90	16	3	•
DLC3SARB160R300N48C	16	3	24	48	15.4	90	16	3	•
DLC3SARB160R400N48C	16	4	24	48	15.4	90	16	3	•
DLC3SARB200R200N55C	20	2	30	55	18	100	20	3	•
DLC3SARB200R300N55C	20	3	30	55	18	100	20	3	•
DLC3SARB200R400N55C	20	4	30	55	18	100	20	3	•
DLC3SARB250R200N55C	25	2	37.5	55	23	100	25	3	•
DLC3SARB250R300N55C	25	3	37.5	55	23	100	25	3	•
DLC3SARB250R400N55C	25	4	37.5	55	23	100	25	3	•
DLC3SARB250R500N55C	25	5	37.5	55	23	100	25	3	•

^{*} Number of Flutes

= Cutting Dia. = Corner Radius

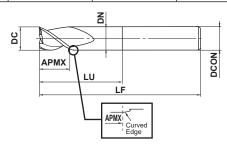
APMX = Depth of Cut Max.


= Usable Length

= Neck Dia.

LF = Functional Length

DCON = Connection Dia.



Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
							0

	DC=12	DC>12		
	0 - 0.020	0 - 0.030		
	12≤DCON≤16	20≤DCON≤25		
h6	0 - 0.011	0 - 0.013		

- Stability and reliability even when slotting, ramping and plunging.
 The cross sectional geometry of the flutes is perfect for efficient chip discharge.

Order Number	DC	АРМХ	LU	DN	LF	DCON	* No.F	Stock
A3SA120N36C	12	18	36	11.4	80	12	3	•
A3SA160N48C	16	24	48	15.4	90	16	3	•
A3SA200N55C	20	30	55	18	100	20	3	•
A3SA250N55C	25	37.5	55	23	100	25	3	•

^{*} Number of Flutes

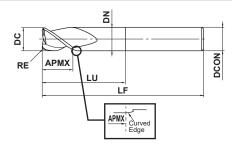
= Cutting Dia. **APMX** = Depth of Cut Max.

= Usable Length DN = Neck Dia.

= Functional Length **DCON** = Connection Dia.

A3SARB

Corner radius end mill, Short cut length, 3 flute, with multiple internal through coolant holes



Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
							0

DC=12	DC>12		
0 - 0.020	0 - 0.030		
12≤DCON≤16	20≤DCON≤25		
0 - 0.011	0 - 0.013		

Stability and reliability even when slotting, ramping and plunging.

● The cross sectional geometry of the flutes is perfect for efficient chip discharge.

(mm)

									()
Order Number	DC	RE	APMX	LU	DN	LF	DCON	* No.F	Stock
A3SARB120R100N36C	12	1	18	36	11.4	80	12	3	•
A3SARB120R200N36C	12	2	18	36	11.4	80	12	3	•
A3SARB120R300N36C	12	3	18	36	11.4	80	12	3	•
A3SARB160R200N48C	16	2	24	48	15.4	90	16	3	•
A3SARB160R300N48C	16	3	24	48	15.4	90	16	3	•
A3SARB160R400N48C	16	4	24	48	15.4	90	16	3	•
A3SARB200R200N55C	20	2	30	55	18	100	20	3	•
A3SARB200R300N55C	20	3	30	55	18	100	20	3	•
A3SARB200R400N55C	20	4	30	55	18	100	20	3	•
A3SARB250R200N55C	25	2	37.5	55	23	100	25	3	•
A3SARB250R300N55C	25	3	37.5	55	23	100	25	3	•
A3SARB250R400N55C	25	4	37.5	55	23	100	25	3	•
A3SARB250R500N55C	25	5	37.5	55	23	100	25	3	•

^{*} Number of Flutes

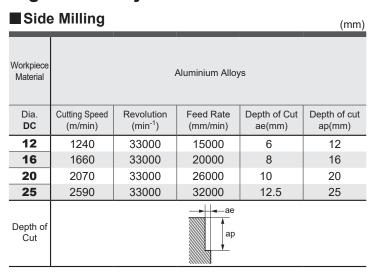
DC = Cutting Dia.

RE = Corner Radius
APMX = Depth of Cut Max.

LU = Usable Length

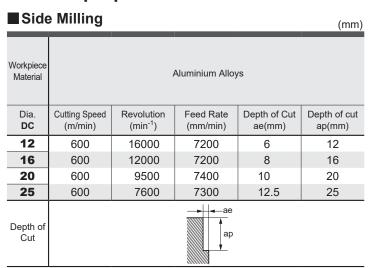
DN = Neck Dia.

LF = Functional Length


DCON = Connection Dia.

A3SA/A3SARB, DLC3SA/DLC3SARB

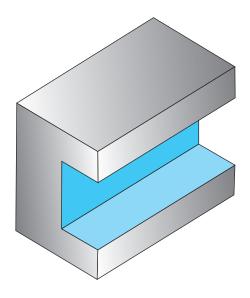
Recommended Cutting Conditions


Use high efficiency cutting conditions when the machine and workpiece rigidity, and chip evacuation properties are sufficient. Use lower, general-purpose cutting conditions when the mechanical or workpiece rigidity or chip evacuation porperties are insufficient.

High Efficiency Conditions

Slot	Milling			(mm)		
Workpiece Material	Aluminium Alloys					
Dia. DC	Cutting Speed (m/min)	Revolution (min ⁻¹)	Feed Rate (mm/min)	Depth of Cut ap(mm)		
12	1240	33000	15000	6		
16	1660	33000	20000	8		
20	2070	33000	26000	10		
25	2590	33000	32000	12.5		
Depth of Cut	ap DC:Cutting Dia.					

General-purpose Conditions


■Slot	Milling			(mm)		
Workpiece Material	Aluminium Alloys					
Dia.	Cutting Speed (m/min)	Revolution (min ⁻¹)	Feed Rate (mm/min)	Depth of Cut ap(mm)		
12	600	16000	7200	6		
16	600	12000	7200	8		
20	600	9500	7400	10		
25	600	7600	7300	12.5		
Depth of Cut	ap DC:Cutting Dia.					

- Note 1) It is recommended to use a water-soluble coolant. It is also possible to use air blow (external/internal) for DLC coated types.
- Note 2) Climb milling is recommended for side cutting.
- Note 3) This table shows the cutting condition with less than 4D overhang length. If more than 4D, spindle speed, feed rate and depth of cut should be reduced.
- Note 4) When ramping, consider the chip discharge and use a feed rate 50% lower than the slotting conditions above and also use a ramping angle of 5° or less.
- Note 5) If the rigidity of the machine or the workpiece materials installation is very low, or chattering and noise are generated, reduce the revolution and feed rate proportionately within the range described in the above table, or reduce the depth and width of cut.

Cutting Example

Machining with a High-speed, High-output Horizontal 5-axis Machining Centre

Ultra-high efficiency processing was achieved with a stable chip discharge and no chattering. Metal Removal Rate of 10,000 cm³/min.

<Cutting Conditions> Workpiece Material: A7050

: A3SARB250R300N55C DC = ø25 mm, RE=3.0 mm

Spindle Revolution : 33000 min⁻¹ Cutting Speed : vc = 2600 m/min Feed Rate : f = 25000 mm/min $z = 0.25 \, \text{mm/t}$ Feed Depth of Cut : ap = 16mm, ae=25mm

Cutting Mode : Internal Coolant (Water-soluble Coolants)

Machine : For machining aluminium structural parts for aircraft

High-speed, high-output horizontal 5-axis M/C

Don't handle inserts and chips without gloves. Please machine within the recommended application range and exchange expired tools with new ones in advance of breakage. and wear safety glasses. When using compounded cutting oils, please take fire precautions. When attaching inserts or spare parts, please use only the correct wrench or driver. When using rotating tools, please make a trial run to check run-out, vibration and abnormal sounds etc.

🙏 MITSUBISHI MATERIALS CORPORATION

MMC Hardmetal (Thailand) Co., Ltd.

Road, Klongton, Klongtoey, Bangkok 10110
Thailand Tel. +66-2661-8170 Fax. +66-2258-1790

Thailand Amata City Branch

Amata Nakorn Industrial Estate Phase 9 700/843 Moo 5,Tambon Nongkakha, Amphur Phanthong, Chonburi, 20160 Thailand Tel: +66-3821-0728 Fax: +66-3821-0732

Singapore Branch

33 Ubi Avenue3, #05-14 Vertex, Singapore 408868 Tel: +65-6634-8250 Fax: +65-6634-8257

Indonesia Representative Office

MM2100 Industrial Town
Jl. Jawa Blok GG-6 No.2 Jatiwangi, Cikarang, Bekasi Indonesia 17520 Tel: +62-21-2214-3639 Fax: +62-21-2214-3745

Ho Chi Minh Representative Office

1205 12th Floor SROC, 2A-4A Ton Duc Thang, Ben Nghe, Dist. 1, Ho Chi Minh City, Vietnam Tel: +84-28-3829-7700 Fax: +84-28-3824-3344

Hanoi Representative Office 403A, 4th Fl. of The 6-Storey Block, Thang Long Ford Building, 105 Lang Ha St., Dong Da District, Hanoi, Vietnam Tel: +84-24-3772-8362 Fax: +84-24-3772-8299

http://www.mitsubishicarbide.com/en/

(Tools specifications subject to change without notice.)